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Abstract. Two factor analysis of dynamic structures (FADS) methods for the extraction of time–
activity curves (TACs) from cardiac dynamic SPECT data sequences were investigated. One method
was based on a least squares (LS) approach which was subject to positivity constraints. The other
method was the well known apex-seeking (AS) method. A post-processing step utilizing a priori
information was employed to correct for the non-uniqueness of the FADS solution. These methods
were used to extract 99mTc-teboroxime TACs from computer simulations and from experimental
canine and patient studies. In computer simulations, the LS and AS methods, which are completely
different algorithms, yielded very similar and accurate results after application of the correction
for non-uniqueness. FADS-obtained blood curves correlated well with curves derived from region
of interest (ROI) measurements in the experimental studies. The results indicate that the factor
analysis techniques can be used for semi-automatic estimation of activity curves derived from
cardiac dynamic SPECT images, and that they can be used for separation of physiologically different
regions in dynamic cardiac SPECT studies.

1. Introduction

When performing functional imaging with SPECT or PET, compartmental model parameters
can be estimated from blood and tissue time–activity curves (TACs). The tissue curves are
often obtained from user-drawn region of interest (ROI) measurements in the reconstructed
tomographic images. The blood curves are typically obtained through blood sampling or, as
with tissue curves, by drawing ROIs. For cardiac imaging, use of regions in the left ventricle
blood pool and in the myocardial tissue have been shown to produce good results with the single
photon emitter 99mTc-teboroxime (Chiao et al 1994, Smith et al 1994, 1996). The ROI methods
are generally more convenient than blood sampling but require skilful selection of appropriate
regions. The ROI methods may also have reliability and reproducibility problems due to the
high noise levels and poor resolution that characterize SPECT images. Several researchers have
sought accurate, simple, operator independent methods, such as factor analysis, for extracting
TACs (Barber 1980, Cavailloles et al 1984).

Factor analysis of dynamic structures (FADS) (Barber 1980, Di Paola et al 1982, Buvat
et al 1993) is a semi-automatic technique used for the extraction of TACs from a series of
dynamic images. FADS has advantages over the ROI technique in that it can be used to achieve
reproducible results. In cardiac SPECT imaging, the TACs obtained from ROI measurements
may be composites of activities from different overlapping components in the selected ROI. In
SPECT, overlapping occurs due to scatter and partial volume effects. To reduce these effects the
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operator must choose small ROIs which appear to be in the region of pure blood or pure tissue.
This is not an easy task due to the high noise levels present in dynamic images, and requires
a significant amount of time to carefully choose of the order of 30 regions per cardiac study.
Also, small regions used for ROI measurements will cause high noise levels in the resulting
ROI TACs. In contrast, FADS methods can separate partially overlapping regions that have
different temporal behaviours (Nijran and Barber 1985, Nakamura et al 1989, Houston and
Sampson 1997). For example, Wu et al (1995) successfully extracted the blood TACs from
dynamic cardiac PET FDG studies. FADS can also separate different physiological regions
and automatically define regions in the image that have the highest concentrations of blood or
tissue components. In the work presented here, it is shown that FADS can be used to separate
the blood pools and myocardial tissue regions in dynamic 99mTc-teboroxime SPECT images.
This method can also be used as an aid for better determination of the regions of interest in the
ROI technique (Pedersen et al 1994).

Usually, the FADS procedure is used first to determine the low-dimensional study
sub-space in which most of the vectors representing the evolution in time for each voxel
are contained. The dimensionality of the study space is equal to the number of dynamic
components in the image. This is ordinarily done by performing an orthogonal analysis of the
data. As a result of orthogonal analysis the study subspace is spanned by a set of orthogonal
basis vectors. The next step is oblique rotation, which provides a new set of non-orthogonal
and non-negative basis vectors (factors). The oblique rotation also imposes non-negativity on
the coordinates of the vectors which represent the data. These coordinates are also called the
factor coefficients. Factor coefficients are simply the images of a given factor. Although there
is evidence that this procedure gives reasonable results, FADS with non-negativity constraints
are not quantitative due to the non-uniqueness of the FADS solution (Houston 1984). This
means that there can be many different solutions which satisfy positivity constraints yet the
solutions can be distinctly different depending on the method used to extract factors and factor
coefficients. In order to improve quantitation of the solution of FADS, a priori physiological
information can be used (Nijran and Barber 1986).

The goal behind this work was to develop a semi-automatic method for the extraction of
TACs from dynamic cardiac SPECT sequences. Two FADS methods were employed—one
the ‘standard’ FADS of Di Paola et al (1982), and the other a more direct approach that will
be developed in this paper. Both used a priori knowledge about the heart physiology and
uptake characteristics of teboroxime. FADS methods were employed and tested first with
computer simulations, and then used for experimental cardiac 99mTc-teboroxime canine and
patient studies.

2. Theory

2.1. Least squares factor analysis of dynamic structures (LS-FADS)

The fundamental assumption behind factor analysis methods is that changes in pixel intensities
over time can be described as a linear combination of factors F̃, where the coefficients of the
combination are defined in C̃. Thus, the factor model is expressed by

A = C̃F̃ + ε (1)

where A is the matrix of measured data of size N × M , with N being the number of pixels in
one image and M the number of time frames; C̃ contains factor coefficients for each pixel and
F̃ is a K × M matrix of time activity curves (TACs). Matrix C̃ is N × K with K being the
number of factors. ε is a random error term. The usual approach for finding C̃ and F̃, which
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is the goal of FADS, is to perform a singular value decomposition (SVD) of preprocessed
data and then to impose non-negativity constraints on the SVD solution (Di Paola et al 1982,
Nakamura et al 1989, Sitek et al 1999a).

In this paper we propose a least squares (LS) approach. In the LS method, the singular value
decomposition is not required. Assuming the factor model expressed by (1), a χ2 function is
minimized under positivity constraints imposed by an additional term in the objective function.
This method requires an initial estimation of the number of factors. The total objective function
is a Cartesian norm between the data and the model modified by non-negativity constraints
and is given by

f (C, F) =
N,M∑
n=1
m=1

(An,m − (CF)n,m)2 + fnneg(C, F) (2)

where fnneg imposes non-negativity and is defined as

fnneg(C, F) =
N,K∑
n=1
k=1

sCC2
n,kH(Cn,k) +

K,M∑
k=1
m=1

sF F 2
k,mH(Fk,m) (3)

where sC and sF are constants defining the ‘strength’ of the non-negativity constraints in the
objective function, and H(x) is

H(x) =
{

1 if x < 0

0 if x � 0.
(4)

Matrices C and F represent estimates of true physiological matrices C̃ and F̃. However, the
estimates may differ from the truth for three reasons. First, they may differ due to noise
which exists in A in (1), but is not modelled in the objective function. Second, the assumed
factor model may not accurately represent the physiology. Third, FADS with a non-negativity
constraint gives a solution that is not necessarily unique.

2.2. Correction for non-unique solution

We found that the non-uniqueness of FADS was the main source of error when FADS was
used for analysis of teboroxime cardiac images (Sitek et al 1999a). In this paper a post-
processing technique using a priori information was used to correct for the non-uniqueness
of the FADS solution (Sitek et al 1999b). This technique is specifically designed for cardiac
imaging. The derivation of the correction consists of three main steps. First, it will be proved
that factors and factor coefficients found by FADS with non-negativity constraints are the
linear combinations of the true factors and true factor coefficients as long as the number of
components is chosen appropriately. Second, the coefficients of these linear combinations
(contamination coefficients) will be considered in the light of certain a priori assumptions
about the true factors: (a) true factor coefficients do not completely overlap, (b) there is a time
delay between the LV and RV (the RV component appears earlier in the image) and (c) there
is a time delay between the tissue and the LV and RV factors. These a priori assumptions will
lead to a conclusion that some of the contamination coefficients will have to be equal to zero,
and the rest of them will be shown to be either greater or less than zero. Third, the values
of constrained but still unknown contamination coefficients will be found using the following
a priori knowledge.

(a) The value of the tissue factor coefficient inside the LV should be zero.
(b) The value of the tissue factor coefficient inside the RV should be zero.
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Figure 1. Schematic factors (curves) and factor coefficients (images) for cardiac teboroxime
imaging with three components. From left: RV, LV and tissue.

(c) The value of the LV factor coefficient inside the RV should be zero.

(d) The value of the RV factor coefficient inside the LV should be zero.

2.2.1. Proof of linear dependence. Considering the matrix F as a set of M-dimensional row
vectors, and the matrix C as a set of N -dimensional column vectors, the main assumption
behind the correction for non-uniqueness is that the set of factors F acquired by non-unique
FADS is a linear combination of the true F̃, and that the factor coefficient vectors C are linear
combinations of the true C̃, and vice versa. Saying this differently K M-dimensional row
vectors F span the same K-dimensional vector space �F as the vector space �F̃ spanned by
the row vectors of F̃, and K N -dimensional column vectors C span the same K-dimensional
vector space �C as the vector space spanned by the column vectors of C̃. The above equality
is guaranteed by the equation

CF = C̃F̃ (5)

because it follows from (5) that F = [(CTC)−1CTC̃]F̃, thus the vectors F are linear combinations
of F̃, so �F is a subspace of �F̃ . By transforming (5) into F̃ = [(C̃TC̃)−1C̃TC̃]F it can be
concluded also that �F̃ is a subspace of �F , so �F̃ = �F must hold. Similarly, from (5) it
can be shown that �C̃ = �C .

2.2.2. Derivation of the matrix contamination coefficients. For cardiac imaging,
schematically presented in figure 1, the image of the healthy heart consists of three factors:
right ventricle (RV) blood pool, left ventricle (LV) blood pool and myocardial tissue. In
general, factors acquired by FADS with only the non-negativity constraints in the case of heart
imaging are linear combinations of true factors, as was shown in section 2.2.1:

FR = 1 F̃R − xRLF̃L − xRT F̃T

FL = 1 F̃L − xLRF̃R − xLT F̃T

FT = 1 F̃T − xTRF̃R − xTLF̃L (6)

where FR, FL and FT are factor row vectors obtained by FADS with non-negativity constraints,
F̃R, F̃L and F̃T are the true factors of RV, LV and tissue and xRL, . . . are the contamination
coefficients. Generality is not lost by fixing some of the contamination factors in (6) to
1, because the normalization of the true factors F̃R, F̃L and F̃T has not yet been specified.
Therefore, (6) requires implicit normalization of the true factors in order that (6) holds. It has
been reported in the literature that FADS with non-negativity constraints give curves which
resemble true factors, suggesting that the constants xRL, . . . in (6) are much smaller than 1. We
also have found that the maximum values of xRL, . . . in (6) are of the order of 0.1. Value of
the contamination coefficient xRL can be interpreted as LV blood factor contamination in the
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RV blood factor and other contamination coefficients can be interpreted likewise. In matrix
notation (6) can be expressed as[

FR

FL

FT

]
=

[ 1 −xRL −xRT

−xLR 1 −xLT

−xTR −xTL 1

] [
F̃R

F̃L

F̃T

]
= MF̃ (7)

with M defined as

M :=
[ 1 −xRL −xRT

−xLR 1 −xLT

−xTR −xTL 1

]
. (8)

Inverting M gives

M−1 = 1

detM

[ 1 − xTLxLT xRL + xTLxRT xRT + xRLxLT

xLR + xTRxLT 1 − xTRxRT xLT + xLRxRT

xTR + xLRxTL xTL + xTRxRL 1 − xRLxLR

]
(9)

and neglecting the second order terms of the constants, xTLxLT , . . ., since the constants are
small, the inverse M−1 can be expressed as

M−1 ≈
[ 1 xRL xRT

xLR 1 xLT

xTR xTL 1

]
. (10)

Thus, using matrix notation, it follows from (5) and (10) that

[ CR CL CT ] = C̃M−1 ≈ [ C̃R C̃L C̃T ]

[ 1 xRL xRT

xLR 1 xLT

xTR xTL 1

]
. (11)

Considering (7) and the fact that F was found under non-negativity constraints the true RV
factor cannot be subtracted from the true tissue factor since the activity in the tissue is delayed
with respect to RV (figure 1). Such subtraction would create negative values in the estimated
tissue factor. Since the subtraction is not allowed, the corresponding coefficient in (7), −xTR,
must be larger than or equal to zero if the non-negativity of the FT factor is to hold. Similarly
it can be shown that −xLR � 0.

However, it can also be noticed in figure 1 that from the true RV factor certain amounts
of the true LV and true tissue factors can be subtracted without violating the non-negativity
constraints of the RV factor. Therefore, using there considerations no constraints can be put
on the values of −xRL and −xRT . Also the true tissue factor can be subtracted from the
true LV factor without violating non-negativity of the factors obtained by FADS with non-
negativity constraints. In summary: the non-negativity of F puts the following constraints on
the contamination coefficients: −xTR � 0 and −xLR � 0.

Now consider the assumption (a) made in section 2.2 that the true factor coefficients do not
completely overlap. If even a single pixel of each component is ‘pure’ then the subtraction of the
non-zero factor coefficient at that location from the factor coefficients of the other components
will result in negatives on the left-hand side of (11). Since a non-negativity constraint was
used to find the left-hand side of (11), it is clear that all of the contamination coefficients in
(11) must be greater than or equal to zero.

However, this assumption fails to consider that approximately 10–20% of the volume of
a tissue region consists of capillaries carrying blood. That is, the (LV) blood pool coefficient
completely underlays the tissue coefficient image. Thus, some of the true tissue factor
coefficient image can be subtracted from the LV blood coefficient image without violating
the non-negativity constraint, which implies that xTL does not have to be greater than zero.
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These considerations lead to the following: xTR � 0, xRL � 0, xRT � 0 and xLR � 0.
Combining these conditions with the previous ones gives the following constraints on the
contamination coefficients: xLR = 0, xTR = 0, xRL � 0, xRT � 0 and xLT � 0, so the general
form of (7) can be rewritten[

FR

FL

FT

]
=

[ 1 −xRL −xRT

0 1 −xLT

0 −xTL 1

] [
F̃R

F̃L

F̃T

]
= MF̃ (12)

and the corresponding form of (11) is

[ CR CL CT ] = C̃M−1 ≈ [ C̃R C̃L C̃T ]

[ 1 xRL xRT

0 1 xLT

0 xTL 1

]
. (13)

2.2.3. Estimation of contamination coefficients. In order to find unknown coefficients xRL, . . .

in (12) and (13) a priori knowledge (a)–(d) listed at beginning of section 2.2 was used.
Equation (13) can alternatively be written as

CR ≈ C̃R

CL ≈ xRLC̃R + C̃L + xTLC̃T

CT ≈ xRT C̃R + xLT C̃L + C̃T . (14)

It can be seen from (14) that C̃R ≈ CR , so that non-negativity constraints give a unique
RV coefficient image. To find values of xRL, . . ., consider the average value of the factor
coefficients for pixels corresponding to the RV. These pixels are defined as pixels with the
highest value in the image RV coefficient CR . In this paper the three pixels with the highest
value of the given factor coefficients were always used. Let the notation CR(LV) denote the
average value of the RV coefficient of the three pixels which have the highest values of LV
coefficient and similarly for others. Using this notation the a priori conditions (a)–(d) can be
listed as

(a) C̃T (LV) = 0

(b) C̃T (RV) = 0

(c) C̃L(RV) = 0

(d) C̃R(LV) = 0. (15)

Considering the first and the second equations in (14) and evaluating the average values of
the factor coefficients for the RV we have that xRL = CL(RV)/CR(RV). Similarly other
coefficients can be found (please see the appendix for the complete derivation of (16)) to give
the following results:

xRL = CL(RV)

CR(RV)

xRT = CT (RV)

CR(RV)

xLT = CT (LV)

CL(LV)
. (16)

Using these considerations only the value of xTL cannot be found because the tissue component
is completely overlapped by the LV (see the appendix). Knowing the values of the
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contamination coefficients from (16), true factors can be found by inverting (12) and true
factor coefficients by inverting (13):[

F̃R

F̃L

F̃T

]
= M−1F ≈

[ 1 xRL xRT

0 1 xLT

0 xTL 1

] [
FR

FL

FT

]
(17)

and true coefficients

[ C̃R C̃L C̃T ] = CM = [ CR CL CT ]

[ 1 −xRL −xRT

0 1 −xLT

0 −xTL 1

]
. (18)

The lack of knowledge of the value of xTL leaves the tissue curve biased by the LV curve in
(17), and biases the LV image coefficient by the tissue coefficient image in (18).

Equations (16)–(18) provide a procedure for correcting the FADS solution for the case of
teboroxime cardiac imaging.

3. Methods

Two FADS methods were studied in this paper. The method described in section 2.1 will
be referred to as the least squares method (LS method). This method requires non-linear
minimization. The objective function (2) was minimized by the conjugate gradient algorithm
(Press et al 1996). In order to compare the non-standard LS FADS method to an established
technique, results from the apex-seeking method (Di Paola et al 1982) are presented alongside
the results of the LS FADS method from computer simulations and from normal canine studies.
The apex-seeking method will be referred to as the AS method. Results from both the LS
and the AS methods were corrected for non-uniqueness by the method described in section 2.2.
The corrected methods will be referred to as CLS and CAS for corrected least squares and
corrected apex-seeking methods, respectively.

3.1. Computer simulations

Computer simulations were performed using the MCAT phantom (Tsui et al 1993). A time
series of images were created from a slice of the heart region of the MCAT phantom. Each
image was 64 × 64 pixels in size and each image consisted of three factors: left ventricle
blood, right ventricle blood and myocardial tissue. The spatial distributions of these factors
are presented in figure 2. To simulate the resolution effects there was a 1 pixel overlap between
different components, i.e. there was 1 pixel overlap of the tissue (figure 2(c)) with the RV blood
pool (figure 2(b)), and 1 pixel overlap of the LV tissue (figure 2(c)) with the LV blood pool
(figure 2(a)). There is also an overlap between the background (figure 2(d)) and all other
components. Although the assumed overlap was just 1 pixel, it is quite substantial for the
tissue (figure 2(c)), which has a thickness of 1–3 pixels.

The LV blood component completely underlays the tissue and the background. This is
because of the presence of the LV blood pool component in the heart tissue was assumed
(see (21)). The background component is assumed to be the same as the LV component but
with smaller amplitude (see the following details).

The blood activity in the LV and in the background resulting from a bolus infusion LV(t),
was simulated by the function used by Smith et al (1996) and was of the form

LV(t) =




0 t � 10

120(t − 10)/20 10 < t � 30
104e−0.1(t−30) + 16e−0.001(t−30) t > 30

(19)
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Figure 2. Images of factor coefficients used in computer simulation (MCAT phantom): (a) LV,
(b) RV, (c) tissue and (d) background.

where t is the time expressed in seconds. The background activity was assumed to be one-tenth
of the LV activity.

The activity in the right ventricle RV(t) was simulated assuming that it had a strong peak at
the beginning of the study and then asymptotically approached the LV blood component. Such
behaviour is consistent with results of experiments in which the bolus with the radioactive
99mTc-teboroxime goes first to the RV and then, over time, the activities in both ventricles
become equal. The following function was used for the RV activity:

RV(t) =
{

240t/10 t � 10
224e−0.1(t−10) + 16e−0.001(t−10) t > 10.

(20)

The tissue component activity concentration T(t) was formed to simulate the uptake of 99mTc-
teboroxime, following a two compartment model, and was calculated using the following
integration:

T(t) = k21

∫ t

0
e−k12τ LV(t − τ) dτ + fvLV(t). (21)

The presence of vasculature in the heart tissue was simulated by setting fv equal to 0.15.
Values of k12 wash-out and k21 wash-in were equal to 0.40 and 0.68 min−1, respectively,
and were chosen to represent stress conditions in the heart. One hundred and eighty-three
dynamic images, each taken over 6 seconds, were simulated. Tomographic projections and
reconstructions were not simulated. Data were simulated with 25% Gaussian noise, i.e. the
variance was 25% of the pixel value. After adding noise, all negative values were rounded
to zero. Thirty independent noise realizations were performed. A 20 × 19 pixel region
encompassing the heart was the only region analysed. To assess the accuracy of the FADS
acquired curves, the Cartesian norms between the true curves and curves obtained by all of
the FADS were calculated. The kinetic wash-in parameter (k21), wash-out parameter (k12)
and vascular fraction (fv) were determined from the curves obtained by FADS and compared
to the kinetic parameters obtained from the true curves. Kinetic parameters were estimated
using RFIT (Huesman and Mazoyer 1987), and their standard deviations were calculated using
30 noise realizations.
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3.2. Experimental canine studies

Data from 16 (eight at rest and eight at stress) canine studies were used to evaluate the
factor analysis techniques. A three-detector scanner (PRISM 3000XP, Picker International,
Inc., Cleveland, OH) with fan-beam collimators (65 cm focal length) was used to acquire
transmission and emission projection data. The transmission scan was performed prior
to the emission acquisition by using a 153Gd fan-beam transmission line source. Without
moving the dogs, a bolus of 99mTc-teboroxime was injected 5 seconds after the start of the
dynamic acquisition. The camera acquired 120 projections over 360◦ every 6 seconds for
17 minutes. The 179 dynamic 3D images were reconstructed using 25 iterations of the ML-EM
algorithm (Shepp and Vardi 1982) with attenuation correction using attenuation maps that
were determined by the transmission scan and scaled to the energy of 99mTc. The acquisition
protocols for the rest and stress studies were the same. The reconstructed 3D images were then
reoriented to obtain short-axis slices of the heart. Both factor analysis methods were applied
to an 11 × 11 pixel region encompassing a short-axis slice of the myocardium, with the size
of the pixel equal to 0.712 cm. The sub-region was used to make sure that there were no
additional components such as liver or pulmonary artery present in the image. Only one slice
was analysed in all but one study included in this paper. In one study, six slices were taken
together and analysed by FADS as volume data.

3.3. Patient study

A patient was scanned using the previously described three-detector system equipped with
low-energy parallel hole high-resolution collimators. The transmission scan using a fan-beam
collimator and a 153Gd line source was performed before the emission acquisition. The values
of the attenuation map were scaled to the energy of 99mTc. External 99mTc markers were used to
align the transmission and emission images. The system acquired 120 64 × 64 pixel emission
projections every 10 seconds over a 15 minute period after the injection of 614 and 1147 MBq
of teboroxime for the rest and stress study, respectively. The rest and stress protocols were
the same. The 90 3D dynamic images were reconstructed by employing three iterations of
the OSEM algorithm (subset size six) (Hudson and Larkin 1994) with attenuation correction.
FADS was applied to a sub-region of one 16 × 9 pixel short-axis slice of the heart region. The
pixel size was 0.712 cm.

3.4. Normalization of the curves; ROI selection

The curves obtained by FADS, before and after correction for non-uniqueness, had to be scaled
by an appropriate scaling factor. Determination of this scaling factor was important in order
to achieve quantitative results. The scaling factors were calculated as the average value of
the three highest coefficients of a given factor. Curves scaled in this way could be directly
compared with ROI measurements. Wu et al (1995) used a similar approach to extract scaling
factors, but their scaling factor was calculated from the values above a certain threshold.
Houston and Sampson (1997) calculated scaling parameters in renal studies based on the total
count in the factor images, which required specification of the region over which the total
count was calculated. We found, based on computer simulation, that our scaling approach
gave quantitatively sound results.

The ROIs used for the ROI measurements were selected based on the factor coefficient
images, e.g. LV ROIs were defined by the pixels which had the highest values of LV factor
coefficients. To reduce spillover effects in the ROI measurements, the chosen ROIs were small
(3 pixels), and they were the same as the pixels used for the calculation of the scale factor. The
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Figure 3. Results of FADS for a single noise realization of simulated teboroxime-99m uptake in
the myocardium: comparison of the curves obtained by uncorrected FADS methods (AS and LS)
and corrected FADS (CAS and CLS) to true curves. Rows correspond to LV, RV and myocardial
tissue factors, respectively.

Table 1. Values of average curve distances with standard deviations obtained using different FADS
methods.

Curve distance

Method LV RV Tissue Tissue+15% LV

AS 4.11 ± 0.78 9.13 ± 0.80 1.14 ± 0.40 2.52 ± 0.71
LS 9.11 ± 0.14 6.24 ± 0.80 0.78 ± 0.06 2.72 ± 0.15
CAS 0.83 ± 0.39 2.20 ± 1.18 1.22 ± 0.50 2.50 ± 0.80
CLS 0.94 ± 0.34 2.20 ± 1.19 0.85 ± 0.11 2.89 ± 0.19

ROI selection process was automatic since it used the results of the factor analysis method and
did not require operator assistance.

4. Results

4.1. Factor analysis of dynamic SPECT simulation studies

Figure 3 shows the TACs obtained by different FADS methods and the comparisons to the true
curves. The example presented in a single noise realization. The discrepancy between the LV
and RV curves obtained by uncorrected FADS methods and the true curves is clearly visible.
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Table 2. Values of kinetic parameters with standard deviations calculated from the results of
different FADS methods.

Kinetic parameters

Method fv
a k12 (0.689) k21 (0.405)

AS 0.003 ± 0.068 0.702 ± 0.065 0.264 ± 0.016
LS −0.031 ± 0.012 0.672 ± 0.044 0.079 ± 0.004
CAS 0.007 ± 0.062 0.702 ± 0.060 0.415 ± 0.028
CLS −0.031 ± 0.013 0.686 ± 0.047 0.417 ± 0.027

a Although the simulated value fv was 0.15, the expected value is undetermined due to the unknown
value of xTL in equation (17).

After the correction is applied the agreement is improved (figure 3). The FADS methods give
tissue curves which are in agreement with the pure tissue curve and agree less with the tissue
curve containing an added vascular component. These findings are confirmed by the results
of multiple noise realizations presented in table 1. The improvement in the LV component for
the CLS method is dramatic. The final corrected results are very similar in terms of accuracy
and precision for both CAS and CLS method and only the tissue curves vary substantially in
precision. However, these large variations do not affect the precision of the estimated kinetic
parameters k12 and k21 (table 2). These differences in tissue curves are due to a large variation
in the unknown parameter xTL in (17), which only affects the estimation of fv .

Table 2 presents the kinetic parameters estimated by RFIT from the curves determined by
FADS and shows kinetic parameters calculated by RFIT from noise free true curves (values in
the brackets given in the caption of table 2). The estimated values of parameters k12 and k21 for
CAS and CLS are very close to the values of k12 and k21 obtained by RFIT from the noiseless
theoretical curves. The differences between the values of kinetic parameters obtained from
noiseless curves and from curves with noise were tested with the two-tailed, paired Student’s
t-test (Brownlee 1965). The null hypothesis that the difference is zero can be rejected for k12

at the level of significance p = 0.344 for CAS and p = 0.782 for CLS methods, and it can be
rejected for k21 with p = 0.126 for CAS and p = 0.061 for CLS methods. For the uncorrected
methods, p-values are similar to those obtained by corrected methods for k12 (0.385 for AS
and 0.100 for LS). Uncorrected AS and LS methods give a value of k21 which is different
from the value of k21 obtained from noiseless curves (p < 0.000 001). Values of wash-in and
wash-out parameters obtained from noiseless curves are slightly different from the theoretical
values which were used in generation of the curves. This difference is due to the integration
and sparse temporal sampling of the curves. The negative value of the fv parameter found in
the LS study is allowed in this method because of the undetermined value of the constant xTL

in (17).

4.2. Factor analysis of 99mTc-teboroxime canine studies

The LS FADS analysis was applied successfully to 16 canine studies (eight at rest and eight in
stress conditions) and to four patient studies (two at rest and two in stress). In this paper the
results from a total of five canine and patient studies are presented, including a normal canine
study, and a canine study with occlusion.

In figures 4 and 5, the results of FADS from a normal canine study are presented.
Figure 4 presents the results of a canine stress study and figure 5 presents the results of a
canine rest study. As in the simulation studies the correction for non-uniqueness creates
better agreement between the results of the CLS and CAS methods and improves agreement
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Figure 4. Results of FADS for a canine teboroxime-99m stress study: comparison of the curves
obtained by uncorrected FADS methods (AS and LS) and corrected FADS methods (CAS and CLS)
with curves obtained from ROI measurements. Rows correspond to LV, RV and myocardial tissue
factors, respectively.

between ROI curves for the LV and RV components. There is not a strong agreement with
the tissue but such agreement is not expected since, as shown in the computer simulation
study, FADS separates pure tissue curves from the vascular component. Therefore, it is
not surprising that ROI measurements give tissue curves different from those obtained with
FADS.

The RV curve in figures 4 and 5 has a very strong peak at the beginning when the
concentrated bolus reaches the RV. In the later phase of the study RV and LV components are
equal. In the rest study, there is a significant discrepancy between the tissue curves obtained
by the CAS method and those obtained by the CLS method, but this is probably due to the
unknown xTL, as was shown in a computer simulation comparing AS and LS. The rest study
was performed approximately 1 hour after the stress study and there is some residual activity
which elevates all of the curves for the rest study in figure 5.

Figure 6 presents images of factor coefficients for the LS results in the stress study
(figures 6(a) and (b)), and the rest study (figures 6(c) and (d)). There is little difference between
the corrected and uncorrected coefficients. The only noticeable difference is the increase of
contrast in the image of the corrected tissue coefficient, which is particularly noticeable in the
rest study, and a lessening of the contrast in the image of the LV coefficients. The image of
the LV component is more spread out in the stress study. The image of the RV coefficients
is larger in the rest study than it is in the stress study. There are no salient differences in the
images of the myocardium between the rest study and the stress study.
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Figure 5. Results of FADS for a canine teboroxime-99m rest study: comparison of the curves
obtained by uncorrected FADS methods (AS and LS) and corrected FADS methods (CAS and CLS)
with curves obtained from ROI measurements. Rows correspond to LV, RV and myocardial tissue
factors, respectively.

The factor analysis methods were also applied to volume data from the same canine study.
Here, however, the size of the region in the analysed slices was further reduced to 7×10 pixels.
The reduction was done in order to lessen the influence of the liver on the results. Because of
that reduction only part of the myocardium was included in the analysis. Figure 7 shows the
TACs obtained by the CLS method. For the volume data the curves are very similar to curves
obtained from a one slice analysis, but the noise is less in the volume results. Figure 8 shows
the corresponding factor coefficients.

4.3. Factor analysis of a 99mTc-teboroxime patient study

The TACs for the patient studies are presented in figure 9. The curves are much noisier than
in the canine studies. Due to low temporal resolution (10 seconds) there is some mixing of the
RV and LV components in the rest study (the RV image is non-zero in the LV). The slices in
figure 10 are not perfectly co-registered since the patient was moved between the stress and
rest studies. However, they do correspond to approximately the same region of the heart. As
in the canine studies, the image of the coefficients of the LV is ‘spread’ more in the stress study
than it is in the rest study. Also, the RV appears to be larger in the rest study. The image of
tissue coefficients seems to be non-uniform, but it cannot be determined conclusively whether
this is due to noise or from non-uniform uptake of the radio-pharmaceutical.
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Figure 6. Images of factor coefficients obtained by the LS method, rows (a) and (c), and the CLS
method, rows (b) and (d), for a teboroxime canine study. Rows (a) and (b) represent the stress
study, and (c) and (d) represent the rest study. Columns from left to right correspond to LV, RV and
myocardial tissue components. Factor coefficients in this figure correspond to factors presented in
figures 4 and 5.

Figure 7. Results of CLS method and ROI measurements from volume (3D) data in a canine
teboroxime-99m stress study (first column) and rest study (second column). Rows correspond to
LV, RV and myocardial tissue components.
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Figure 8. Images of factor coefficients obtained by the CLS method from canine volume data.
Columns (a), (b) and (c) correspond to LV, RV and tissue coefficients for the stress study, and (d),
(e) and (f) correspond to the rest study. Rows represent subsequent slices in the volume images of
the coefficients.

5. Discussion

In this paper two factor analysis techniques were applied to dynamic cardiac SPECT imaging.
The techniques enabled the estimation of the LV and RV factor curves and were used for
extracting tissue curves averaged over part of the myocardium. FADS, as described in this
paper, gives tissue curves that are mixed with the LV component. The authors speculate that
incorporation of the two-compartment kinetic model of teboroxime uptake into the FADS
algorithm may help to resolve the problem of the unknown value of xTL in equation (17).
The problem of the unknown xTL however may not be critical, because the kinetic parameters
can be estimated from tissue TACs biased by LV curves as long as LV TACs are provided
correctly. More importantly, in using FADS with three components the assumption is made
that the myocardium is uniform and that the uptake of the pharmaceutical occurs at the same
rate through the entire volume of the myocardium. However, this is not true for abnormal
regions which have dynamically different uptake.

When imaging an abnormal heart more components must be used. This is an open issue,
since in a particular heart there may be regions with different amounts of infarction and ischemia
and theoretically each of these regions would have a different temporal behaviour. Questions
remain as to whether FADS would be able to separate all of the different regions in an abnormal
myocardium given noisy SPECT data, and whether it would be possible to overcome the non-
uniqueness effects for such FADS analysis. This separation would be a difficult task due
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Figure 9. Results of the CLS method and ROI measurements for a patient teboroxime-99m stress
study (first column) and rest study (second column). Rows correspond to LV, RV and myocardial
tissue components.

Figure 10. Images of factor coefficients obtained by the CLS method from patient data. The first
column corresponds to the stress study and the second column corresponds to the rest study. Rows
(a), (b) and (c) show coefficient images of LV, RV and myocardial tissue. In the images, the inferior
part of the myocardium is missing: it was not taken into account due to liver contamination in the
inferior area.
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to the similarity of tissue curves and the large degree of noise in SPECT dynamic images.
However, FADS is a useful tool for the automatic extraction of input functions from the LV
and RV, which are at least as accurate as manual ROI measurements and have much better noise
characteristics. Although the tissue curves may not be correct in abnormal studies, the image
of tissue factor coefficients may serve as an indication of whether or not there is abnormality
in the heart, and may aid in image segmentation.

The results of the CLS method were almost independent of the values of the weighting
parameters (3), sC and sF , for 5000 > sC, sF > 100. The absolute and relative values of
these parameters affect the results of the LS method, but when the non-uniqueness correction
is applied the results change to solutions which are very close to each other, regardless of the
values of the parameters. The values of sC and sF used in this paper were 200 for the LS and
CLS methods.

To determine the sensitivity of the results to the starting points, we performed FADS with
different starting points for a given set of data. We found that if we started with reasonable
starting points the results were not sensitive to the starting points. Reasonable starting points
were determined by taking a constant value for the elements of the matrix C, and making the
rows of the matrix F linearly independent. Also, the orders of magnitude of the elements in the
matrix CF were chosen to agree with the order of magnitude of the analysed data. We found
that when starting points were chosen randomly (random values of C and F) the algorithm
sometimes failed to separate factors.

The LS method required a computationally expensive minimization procedure due to the
non-linear objective function and the fairly large number of unknowns (the entries of C and F).
No constraints, except non-negativity, were put on the values of C or F, but the algorithm was
numerically stable for all the data used here. In terms of computation time, the calculation of
a 20 × 19 pixel sub-region of a slice with 183 time frames took approximately 20 seconds on
a SPARC Station 3000 (167 MHz) for the LS method and about 1 second for the AS method.

FADS with non-negativity constraints may lead to distinctly different solutions depending
on the initial starting point, the FADS algorithm and the parameters of the algorithm. Even
with all of those characteristics held constant, the difference can be substantial even for a
different noise realization of the same numerical study. For the special case of teboroxime
cardiac imaging it is possible to design a technique which can correct for these non-uniqueness
effects, and, although the technique does not fully give unique answers (due to the unknown
xTL in (17)), FADS with correction for non-uniqueness provides a very good estimation of the
input function and estimation of RV component, because the lack of knowledge of xTL does
not influence the LV and RV curves extracted by FADS.

Two distinct FADS methods were used for the extraction of factors and factor coefficients:
the AS method described by Di Paola et al (1982) and the LS method described in section 2.
The main difference between these two methods is the approach in the determination of the
study subspace. In the AS method, the study subspace is determined by performing orthogonal
analysis of the normalized vectors (normalized to 1) which represent changes of activity in
each voxel. Oblique rotation is performed to impose non-negativity constraints. On the other
hand, in the LS method, the study subspace is determined directly from the data and the non-
negativity constraints are simultaneously imposed on the solution so that the oblique rotation
step, which is required in the AS method, is not needed here. Both approaches can be improved
by taking into account the statistics of the data. Correspondence analysis can be implemented
into the AS method as done by Benali et al (1993), and the objective function in the LS
method can be modified to take into account the noise. However, both of these approaches
require the knowledge of the variances of each voxel. These variances are typically unknown
in reconstructed SPECT images. The estimation of these variances and their use in the FADS
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methods will be an interesting continuation of the work presented in this paper. There does
not appear to be any clear advantage or disadvantage of the AS method or LS method over the
other. The LS approach enables easy incorporation of the priors such as the smoothness prior
on the factors or factor coefficients, or of entropy (Sitek et al 1999a). The greatest disadvantage
to the LS approach is that the number of factors in the image has to be known a priori. We
found that the AS method performed similarly to the LS method, yet the results from both
uncorrected methods were not accurate (table 1).

In our experience we found that the greatest disadvantage of FADS (both AS and LS) is
its non-unique solution. The results of the LS and AS methods can differ greatly from each
other due to non-uniqueness (tables 1, 2, figure 3). We demonstrated that FADS solutions
with no correction for non-uniqueness do not give quantitatively correct results, and we had to
implement a priori knowledge in order to make the solution quantitatively acceptable (table 2,
figure 3).

A very important question is whether the assumptions made regarding a priori knowledge
are correct. The computer simulations show that if these assumptions are correct, the method
described in section 2.3 corrects for the non-uniqueness of FADS almost perfectly. However,
in real studies these a priori assumptions are not completely valid because there will be some
contribution from myocardial tissue in the LV and RV due to scatter and finite resolution so
in fact C̃T (RV) �= 0 and C̃T (LV) �= 0. The error made in assuming that these equations
are equal to zero is minimized by our method by automatic determination of the pixels in
the RV and LV in which the tissue coefficients are the smallest. In so doing, the effects
of scatter and finite resolution are minimized. Also, when large (volume) regions are
taken into account in the FADS analysis, the error is smaller. This is because in volume
data there are more available voxels among which a priori assumptions (a) and (b) from
section 2.2 hold well. Assumptions (c) and (d) from section 2.2 hold very well since the
high-amplitude voxels of the image RV coefficients are well separated spatially from the
voxels with the highest amplitude in the LV so that the spillover between these two regions is
minimal.

In cardiac imaging the presence of the liver is of concern, because it is positioned close to
the heart and substantial uptake in the liver can bias the image. In all of the canine studies, the
liver was held away from the heart with a bundle of gauze. Also, in all of the studies presented
in this paper, the influence of the liver on the FADS results was minimized by not using the
regions of the image where the liver was present. The disadvantage of this approach is that
some useful information in the region of the liver is also rejected. The liver component can
be included in the FADS analysis, and factor analysis can be performed successfully with a
four-component image. However, the liver introduces an additional complication in terms of
the correction for non-uniqueness. A similar approach to the one presented in this paper can be
used with the liver component, but such an approach would require more a priori assumptions
than were used in this study. We will consider this approach in future work. The development
of a FADS approach that includes the liver might be extremely valuable clinically for patients
in which the inferior wall is not diagnosable. That is, if the liver component is accurately
identified, it can in theory be removed from the image. This could be done in static scans as
well, as long as they were acquired dynamically.

6. Summary and conclusion

In this work, the use of factor analysis of dynamic structures for dynamic cardiac SPECT
imaging was investigated by analysing computer simulations, experimental canine studies and
patient studies.
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The effects of non-uniqueness were studied with computer simulations and a method was
designed to correct for the non-uniqueness of FADS for three-component cardiac imaging
based on a priori knowledge. Corrected FADS were then applied to canine and patient
studies. The LV, RV and tissue curves and images of curve coefficients were obtained.
FADS-obtained curves that were corrected for non-uniqueness were compared to curves from
ROI measurements and a strong agreement between them was established for LV and RV
curves.

In their current state, the FADS methods developed here can be used as a semi-automatic
method for robustly extracting accurate TACs from dynamic SPECT or PET images. The
method is semi-automatic because it is still required that the operator specify the region in the
image on which the factor analysis is to be performed. These methods may also be used as
tools for segmentation which separates different components.
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Appendix

The complete derivation of (16) is presented here. Evaluating (14) for the factor coefficients
for the RV we have

CR(RV) = C̃R(RV)

CL(RV) = xRLC̃R(RV) + C̃L(RV) + xTLC̃T (RV)

CT (RV) = xRT C̃R(RV) + xLT C̃L(RV) + C̃T (RV). (A1)

Using conditions (b) and (c) from (15)

CR(RV) = C̃R(RV)

CL(RV) = xRLC̃R(RV)

CT (RV) = xRT C̃R(RV) (A2)

and dividing the second equation in (A2) by the first equation in (A2) we have that xRL =
CL(RV)/CR(RV). Dividing the third equation in (A2) by the first equation in (A2) we obtain
xRT = CT (RV)/CR(RV).

Using (14) we can also evaluate factor coefficients for the LV, and after imposing conditions
(a) and (d) from (15) we have

CR(LV) = 0

CL(LV) = C̃L(LV)

CT (LV) = xLT C̃L(LV). (A3)

Dividing the third equation in (A3) by the second equation in (A3) we obtain the value of
xLT = CT (LV)/CL(LV).
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Nothing can be gained from the consideration of the values of coefficients evaluated over
the tissue component even assuming the additional a priori condition C̃R(TI) = 0, because
(14) takes the form

CR(TI) = 0

CL(TI) = C̃L(TI) + xTLC̃T (TI)

CT (TI) = xLT C̃L(TI) + C̃T (TI). (A4)

Equation (A4) is not solvable since C̃L(TI), C̃T (TI) and xTL are unknown.
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